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Abstract

Grokking is a delayed transition from memorisation to generalisation in neural networks. It challenges perspectives
on efficient learning, particularly in structured tasks and small-data regimes. We explore grokking in modular
arithmetic from the perspective of a training pathology. We use Singular Value Decomposition (SVD) to
modify the weight matrices of neural networks by changing the representation of the weight matrix, W, into
the product of three matrices, U, ¥ and VT, Through empirical evaluations on the modular addition task,
we show that this representation significantly reduces the effect of grokking and, in some cases, eliminates
it. Code available at: https://github.com/gmw99/decomposed_learning_an_avenue_for_
mitigating_grokking

1. Introduction

Understanding the learning dynamics of deep learning models is a critical area of research, especially as these models are
increasingly deployed in real-world scenarios. Although significant advances have been made in optimising training (Hu
et al., 2022; Zhao et al., 2024; Ma et al., 2024), the finer details of how neural networks generalise remains a significant
challenge as phenomena such as grokking (Power et al., 2022) challenge our perspective on efficient learning in neural
networks. The grokking phenomenon introduced by Power et al., (2022) represents the dynamic wherein a model
experiences a significant delay between the point at which a model achieves perfect training accuracy and it achieves a
corresponding perfect generalisation accuracy, widely considered as a delayed generalisation. The grokking phenomenon
points towards inefficiencies in existing training setups. Liu et al., (2023), support this by showing that the grokking
phenomena can be induced on MNIST (LeCun et al., 2010) and the IMDB dataset for sentiment analysis (Maas et al.,
2011) when, and only when, the training settings are suboptimal. Grokking in these cases can be mitigated with appropriate
training hyperparameters, suggesting that grokking is a training pathology.

In this paper, we investigate the underlying mechanisms that give rise to delayed generalisation in grokking us-
ing the mod 97 addition task with a 3-layer MLP. We propose a novel approach, namely Decomposed Learning, that
leverages Singular Value Decomposition (SVD) to change the representation of the weight matrices of the layers within
the MLP model. We argue that the use of SVD in this way increases the flexibility of the soft inductive bias of a neural
network (Wilson, 2025). Empirically, we observe that it can mitigate delayed generalisation. By applying SVD, we
decompose the weight matrix, W, into three matrices, Uy, > and VkT, where k is the rank, and explore how this
representation across a range of ranks and training data sizes, affects the learning process, specifically in the context of the
delayed generalisation offered by the grokking phenomenon.

In this paper, we ask:

* What is the relationship between Decomposed Learning and the grokking phenomena?

* What, if any, relationship exists between the rank of a model’s weights and the amount of training data required for
grokking?
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The questions are explored in-depth, and our contributions are:

* Representing the weight matrix, W, as the product of the three matrices Uy, X and V;! reduces the number of epochs
required to achieve the best accuracy by 98.00% compared to training without SVD in the best case. Through this, our
Decomposed Learning method effectively mitigates grokking.

* We show that with increased training data, the discrepancies between the ranks required to alleviate and mitigate the
grokking phenomenon are reduced, which reduces the bottleneck of rank selection at the beginning of training.

2. Related Work

Grokking: Grokking (Power et al., 2022) is the name provided to the phenomena of delayed generalisation. Effectively,
in grokking, the training data is first memorised, i.e. the test accuracy is at circa random accuracy during training. After
significantly more training, the model generalises, and the test accuracy increases to be effectively equivalent to the training
accuracy with minimal or no generalisation gap. Power et al., (2022) also showed that increasing the samples in the training
data can reduce the number of training steps required for grokking to occur. Liu et al., (2022) identified four learning
phases that occur during training, with grokking being a phase that could be avoided with hyperparameter tuning. Liu et al.,
(2023) showed that grokking also occurs on more complicated datasets such as image classification on MNIST, which they
attribute to a discrepancy between training and test losses achieved at high weight norms, referred to as the “LU” mechanism.
Following this, Kumar et al., (2024) suggested that grokking can occur as the neural network transitions from lazy (linear) to
rich (feature) learning. Miller et al., (2024) provided a different perspective on the grokking phenomenon by highlighting
that grokking is not limited to neural networks. Their work suggested that grokking can occur in any model where the
solution is guided by complexity and error. In this paper, we explore how SVD can be leveraged to increase the flexibility of
the soft inductive of a model and how this, in turn, affects the grokking phenomena.

Matrix Decomposition and Deep Learning: Despite neural networks typically being trained with access to all their
parameters, literature has shown that they have an intrinsic dimensionality (Li et al., 2018), allowing fewer parameters
to be used to reach similar performance. Aghajanyan et al. (2020) showed that pre-trained language models have a low
intrinsic dimensionality. Hue et al., (2022) introduced Low-Rank Domain Adaptation (LoRA) as a method for fine-tuning
the self-attention module of large language models and inspired the use of other low-rank adaption methods such as LoHa
(Hyeon-Woo et al., 2023), LoKa (Edalati et al., 2022) and OFT (Qiu et al., 2023). In addition to fine-tuning, matrix
decompositions, specifically SVD, have been used to make training more efficient by performing low-rank projections on
the gradient updates (Zhao et al., 2024; Zhang et al., 2024). Furthermore, SVD has seen use cases in compressing models
with only a slight performance degradation (Swaminathan et al., 2020; Liebenwein et al., 2021). SVD has also been used
dynamically through training by Paul and Nelson (2021), who proposed a learning method using SVD on dense linear layers
to reduce the rank progressively and, by extension, the dimensionality of the network during training. In this paper, we use
SVD to decompose a weight matrix, W, into the form U X kaT at a selected rank, &, prior to training and then train in this
representation. By doing this, we remove the requirement for the dynamic selection of a rank during training. Our method
allows for an improved understanding of how a layers weight rank representation affects the learning process in grokking.

3. Decomposed Learning

Neural network layers are represented by a weight matrix, W, with the shape m  n where the full rank is min(m,n). The
weight matrix, W, can be decomposed into a low-rank form as the product of UX V7 with Singular Value Decomposition
(SVD) (Strang, 2006). Where U and V' are orthogonal matrices and X is a diagonal matrix where the entries are the singular
values (Strang, 2006). A low-rank representation of W at rank k is made by maintaining the top-k entries in 3 with the rest
set to zero.

The particular form of SVD explored in this paper is reduced SVD. In reduced SVD, UXVT is represented as
UX, VI where k is the rank of the approximation and Uy, has the shape m &, 3, has the shape k¥ k and is a diagonal
matrix containing only the top k largest singular values and V;!" has the shape k& n. Specifically, in this setup, Zj, is
optimised as a vector of the top singular values and is diagonalised in the forward pass to ensure all entries in the diagonal
are zero. The decomposition enables an optimisation process on Uy, 5V, instead of only on W.

We posit, that we induce an inductive bias through low rank weights by explicitly parametrising W as U %, V,! .
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We posit that by employing SVD in this way, we increase the flexibility of the soft inductive bias of the model by altering
the weight matrix, W, into Uy ;V;T, increasing the flexibility of the optimisation process.

4. Experimental Setup

We explore how Decomposed Learning can mitigate the grokking phenomenon under the mod 97 addition task, identified
and explored by Power et al., (2022). For this experiment, we employ a 3-layer MLP architecture', with an Embedding layer
with dimensions 99 by 128, a Linear layer with dimensions 512 by 128, followed by a ReLU activation (Agarap, 2018) and
a final output Linear layer with dimensions 128 by 99. The Linear layers weights are initialised with the Kaiming normal
distribution (He et al., 2015), and the corresponding biases are set to zero. The model is optimised with AdamW (Loshchilov
& Hutter, 2019) with a learning rate of 0.001, 31 of 0.9, 35 of 0.98, weight decay of 0.01 and a mini-batch size of 512.

To explore how Decomposed Learning affects the grokking phenomena, we low-rank approximate all three lay-
ers of the MLP at 100%, 50%, 25% and 12.5% of the original total ranks of the weights of the corresponding layers; it is
important to note that these values are rounded down. For example, the embedding layer at 100% (full-rank) would be rank
99 and 50% would be rank 49. Furthermore, we explore how the number of training samples required to exhibit grokking
using 50%, 65% and 80% of the dataset for training affects Decomposed Learning at 100%, 50%, 25% and 12.5% of the
original total ranks. When training with 50%, 65% and 80% of the dataset, the models are trained for 40,000, 20,000 and
10,000 epochs, respectively. An epoch represents a complete pass-through the dataset. We decrease the number of epochs as
the dataset gets larger, in line with the understanding that grokking takes less time when more data is presented (Power et al.,
2022).

5. Results

Here, we present the impact of Decomposed Learning on the model at 12.5%, 25%, 50% and 100% of the total weight ranks.
We compare our Decomposed Learning to a baseline model without SVD (black), as shown in Figure 1. Figure 1a, shows
the clearest example of grokking with the baseline model (black) reaching perfect train accuracy at circa 200 epochs and
near-perfect test accuracy in circa 38K epochs, representing significant delayed generalisation — as expected in grokking.
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Figure 1. Train (solid) and test (dashed) accuracy with SVD on layers at ,50%, 25% and 12.5% of the ranks in comparison with
the the baseline model without SVD (black). Mean across 10 models 1 SEM (Belia et al., 2005) is reported. The x-axis is log-scaled.

Table 1. Model Performance with 50%, 65% and 80% of training data. Mean across 10 models 1 SEM (Belia et al., 2005) is reported.

50% Training Data 65% Training Data 80% Training Data
ips Number of Steps for Steps for Steps for

Condition Parameters Best Accuracy Best Accuracy Best Accuracy Best Accuracy Best Accuracy Best Accuracy
Baseline 91,107 99.909 0.051 37886.400 789.312 | 99.997 0.003 15302.700  759.768 | 99.973 0.015 | 8049.800 436.094

127,419 100.000 0.000 | 15270.000 1066.749 | 100.000 0.000 | 4144.900 527.485 | 100.000 0.000 | 494.700 134.741
50% 63,595 100.000 0.000 | 11827.900 1114.626 | 100.000 0.000 | 3511.500 367.841 100.000  0.000 | 720.200 179.852
25% 31,683 100.000  0.000 | 3646.200 366.481 100.000 0.000 | 548.000 93.077 100.000 0.000 | 233.800 118.456
12.5% 15,955 100.000 0.000 | 754.200 259.586 100.000 0.000 | 446.800 250.985 100.000 0.000 | 182.200 42.277
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Grokking Can be Mitigated When Weight Representations Are Decomposed: In Figure 1, it can be observed that
across all training data that Decomposed Learning reduces and/or mitigates the grokking phenomena against the non-SVD
representation provided by the baselines. In Table 1, we see that in the most extreme case, using Decomposed Learning
can reduce the number of epochs to reach the best accuracy by an average of 98.00%, 97.08% and 97.74% at the 50%,
65% and 80% of the training sizes respectively. We regard this as a significant reduction in the delayed generalisation
expected in the case of grokking. We argue that using SVD in this case of modular arithmetic effectively eliminates the
grokking phenomenon altogether. Furthermore, it is important to note that our application of Decomposed Learning via
SVD also reduces the number of parameters of the model due to the representation U X, V,I. As a result, when using
this representation at 12.5%, 25% and 50% we see a considerable reduction in the number of parameters of the model.
Moreover, we argue that employing Decomposed Learning via SVD not only enables improved optimisation that can
severely reduce the grokking phenomena in the worst case and mitigate it in its entirety in the best case but also allows
the efficient use of model parameters, which highlights the effectiveness of this training paradigm. Through the efficient
optimisation of parameters offered by Decomposed Learning to mitigate grokking, we add to the understanding of grokking
as a training pathology, which we remove through SVD.

Increased Training Data Can Alleviate Differences Between Low-Rank and High-Rank Representations: In Figure 1,
at 50% of the training data, we observe that Decomposed Learning at 12.5% of the ranks far outcompetes other ranks in
reducing the number of epochs for generalisation. For example, the mean percentage decrease between the number of
epochs for the best accuracy for the and 12.5% of the total ranks in this training data regime is 95.06%, as seen in
Table 1. However, at the 80% training regime, this difference is 63.17%. While there is still a discrepancy between the most
effective rank for Decomposed Learning, these results suggest that selecting the correct rank is less important when the
available training data scales. We consider this a significant finding as the selection of the correct rank can severely impact
the effectiveness of our Decomposed Learning paradigm. However, it is important to note that we only observe this for the
modular addition task, and this not observed for modular subtraction, results in Appendix Section B, and thus needs further
exploration. Nevertheless, for this task we find that at all scales, we see a reduction in the number of epochs required to
reach the best accuracy against the baseline that does not employ SVD regardless of the amount of training data, which
suggests a free lunch when employing Decomposed Learning in modular arithmetic grokking scenarios.

6. Conclusion

In this paper, we propose a novel method rooted in linear algebra to mitigate or eliminate grokking. We use SVD to change
the representation of the weight matrix, W, into the product of three matrices, Uy, ¥, and VkT, via Decomposed Learning.

By training on this representation, we argue that we improve the flexibility of the soft inductive bias to enable
effective learning. Through empirical experiments, we verify our intuition by showing that Decomposed Learning allows
the model to generalise more effectively. We record a reduction in the number of epochs before the best test accuracy is
reached of circa 97% by employing our Decomposed Learning against a non-SVD baseline. Furthermore, our approach
bolsters efficient and effective learning by utilising fewer parameters to achieve better performance — contributing to the
understanding that grokking is a training pathology. Additionally, we show that as the dataset becomes more representative,
the performance benefits attributed to low-rank representations increase while reducing the need for bespoke rank
identification.

Overall, our findings contribute to the growing body of work demonstrating that grokking is an example of a
training pathology. However, we extend existing understandings with the novel offering of an effective mechanism
that removes grokking as a training pathology via Decomposed Learning with SVD in the modular arithmetic regime.
Concretely, we demonstrate how learning methods at a small scale can not only disambiguate but mitigate poorly understood
phenomena, such as grokking, with potential applications beyond modular arithmetic.
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A. Exploration on the mod 67 addition task.

To highlight the generalisability of the ndings in the main body of the paper, we additionally explore the mod 67 addition
task. We use a 3-layer MLP architecture, with an Embedding layer with dimensions 69 by 128, a Linear layer with
dimensions 512 by 128, followed by a ReLU activation (Agarap, 2018) and a nal output Linear layer with dimensions 128

by 69. All optimisation settings, along with the mini-batch size, are the same as in the body of the paper. When training with
50%, 65% and 80% of the dataset, the models were trained for 120000, 60000 and 25000 epochs, respectively, to ensure the
model achieved circa 100% test accuracy.

Here, we present the impact of Decomposed Learning on the model at 12.5%, 25%, 50% and 100% of the total weight ranks.
We compare our Decomposed Learning to a baseline model without BMEK], as shown in Figure 2. Figure 2a shows

the clearest example of grokking with the baseline moblielok) reaching perfect train accuracy at circa 200 epochs and
near-perfect test accuracy in circa 115k epochs, representing signi cantly delayed generalisation — as expected in grokking.
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