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Abstract

Data-free methods for analysing and understanding the layers of neural networks have offered many
metrics for quantifying notions of “strong” versus “weak’ layers, with the promise of increased
interpretability. We examine how robust data-free metrics are under random control conditions
of critical and robust layers. Contrary to the literature, we find counter-examples that provide
counter-evidence to the efficacy of data-free methods. We show that data-free metrics are not
reparameterisation invariant in these conditions and lose predictive capacity across correlation
measures, RMSE, Person Coefficient and Kendall’s Tau measure. Thus, we argue that to understand
neural networks fundamentally, we must rigorously analyse the interactions between data, weights,
and resulting functions that contribute to their outputs — contrary to traditional Random Matrix
Theory perspectives.

1. Introduction

Understanding and interpreting deep learning models is a critical area of research, especially as the
prevalence of these models increases in real-world applications. The holy grail of neural network
interpretability lies in identifying computationally cheap metrics that can provide insights into the
effectiveness of neural networks and their components. Data-free methods typify this endeavour
by analysing the properties of the neural network parameters without regard for the data. A key
example of data-free methods is [12], which claims to be able to predict the performance of a
neural network without the requirement of test data through the use of Random Matrix Theory
to analyse the layer weight matrices. In contrast, data-dependent layer analysis via mechanistic
interpretability or functional analysis attempts to quantify how inputs interact at specific layers and
use comparative analysis to understand the interaction between model parameters and data [9, 14, 15].

Zhang et al. [23] identified an interesting and unexpected phenomenon in neural network lay-
ers: some layers within a network are robust, while others are critical. A critical layer is a layer that
cannot be re-initialisatised or re-randomised without dramatically affecting the performance of the
network. In contrast, a robust layer can be either re-initialisatised or re-randomised without any
noticeable effect on performance. Re-initialisation sets the layer back to its initial parameters before
training, and Re-randomisation sets the paramaters of the layer to random values by re-sampling
from the same distribution used for initialisation. It was observed that in some cases, re-initialisation
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and re-randomisation can result in significant performance differences for a given layer, with re-
initialisation maintaining performance but re-randomisation significantly degrading it [23]. In other
cases, re-initialisation and re-randomisation of a layer lead to a negligible difference in performance.

Given that similar studies in loss landscape geometry analysis have explored the efficacy of met-
rics under the notion of reparameterisation invariance [5] we believe the robust and critical layer
phenomena provides a strong basis for asking:

* Are data-free metrics reparameterisation invariant under the robust and critical layer phe-
nomenon recorded by Zhang et al [23]? That is, can they disambiguate between re-initialisation
and re-randomisation of a given layer when performance of the model is impacted.

We find that data-free methods have no significant predictive capacity over the robust and critical layer
phenomenon. As a result, we argue that the surveyed data-free methods are not reparameterisation
invariant and are thus, by extension, at risk of erroneous predictions.

2. Background

This section briefly presents data-free methods and discusses how they are used in this paper.

Data-free methods of interpretability aim to understand the inner workings of neural networks
by studying the properties of the network parameters. Data-free approaches often focus on the matrix
norm properties of layer weight matrices to understand learning or improve the performance of neural
networks [1, 7, 13, 17, 18, 22]. However, Zhang et al., [23], showed in their work that matrix norms,
such as the Frobenius norm, are too coarse to understand the generalisation properties of neural
networks. Martin and Mahoney [12] use Random Matrix Theory to analyse the weights matrices
(excluding biases) of neural network layers through training to create a theory of heavy-tailed self-
regularisation. With this theory, they construct a set of predominately power-norm metrics related to
generalisation that is applied after training to assess layer performance: alpha (o), alpha-weighted
(&), log alpha norm, and MP soft rank [12]. In this work, they identified a value of o between 2 and
6 as a property of a good, well-trained layer, whereas o > 6 indicates that a layer is underfitted and
« < 2 indicates that it is overfitted. Martin et al., [13] showed a correlation between these metrics
and the generalisation performance of pre-trained models in language and computer vision tasks.

Given the work by Zhang et al., [23] that shows norm methods are ineffective, our work explores
Alpha [12], Alpha Weighted [12], Log Alpha Norm [12], MP Soft Rank [12], Generalized von-
Neumann Matrix Entropy [12] Frobenius Norm, Spectral Norm and Stable Rank [16] within the
critical and robust layer phenomena to see if these methods can disambiguate between the perfor-
mance difference of re-initialisation and re-randomisation of a layer.

3. Experimental Setup

Zhang et al., [23], showed the robust and critical layer phenomenon across a range of trained archi-
tectures, MLPs, VGGs [19], ResNets [8], Transformers [21], Vision Transformers [6], MLPMixers
[20] across datasets MNIST [11], CIFAR1O0 [10], ImageNet [4] and LM1B[3]. Therefore, to ex-
plore whether data-free interpretability methods can explain the performance difference between
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re-initialisation and re-randomisation of layers, we use the simplest model (ReLU FCN 5x512),
Figure 1, and dataset (MNIST [11]) identified by Zhang et al., [23] that demonstrates this phe-
nomenon while having the most significant performance difference between re-initialisation and

re-randomisation of layers.
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Figure 1: ReLU FCN 5x512 Model Architecture.

The ReLLU FCN 5x512 model allows for practical analysis of data-free methods, offering a clear
performance contrast between re-initialisation and re-randomisation. Zhang et al.,[23] showed that
residual blocks are robust to re-randomisation and attributed this to the residual layer potentially
playing a lesser role in the network and thus having smaller activations than the skip connection.
To analyse how effective the data-free metrics are at disambiguating between re-initialisation and
re-randomisation, we analyse the correlation between data-free metrics and test accuracy using
the Spearman correlation coefficient p, the root mean square error (RMSE) of the linear regression
and Kendall’s tau measure (K-7). Where p and K-7 score of -1 indicates a very strong negative
correlation, 0 indicates no correlation, and 1 indicates a very strong positive correlation. We use
RMSE and Kendall’s Tau measure for this study as they are two of the correlation metrics used in
[13] to highlight the predictive capacity of the data-free metrics, Log-Frobenius Norm, Log Spectral
Norm, Weighted Alpha and Log Alpha Norm.

We trained 100 ReLU FCN 5x512 models, creating 100 initialisations and 100 trained models,
to obtain a representative sample of possible initialisations and trained models. The model weights
and biases are initialised and re-randomised from the same distribution U/ (—+v/k, v'k) where k is
m, e.g. FCl has k = ﬁ. We record the data-free metric properties of these trained models’
layers when they undergo re-initialisation and re-randomisation to understand if data-free meth-
ods can disambiguate between the critical and robust layer phenomenon. This exploration also
demonstrates the overall predictive capacity of the data-free metrics at the end of training.

Data-Free Metrics. Power Norm based data-free methods analyse a layer weight matrix, W,
excluding the bias. A variety of data-free metrics have been developed in the literature to quantify
the importance of a layer, we focus on the following metric [12]:

* Alpha («): The fitted power law exponent, «, for the empirical spectral density of the
correlation matrix X = WTW, such that pes,p(A) ~ A~%, where ) are the eigenvalues of X.

The metrics are collected using the weightwatcher! tool. In Appendix Section A we present the
formalisation and analysis of the other data-free methods.

l. https://weightwatcher.ai
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4. Results and Discussion

For clarity and succinctness, we only present our results for the data-free metric « of [12] in the
body of the paper. In Appendix Section A we present the analysis of a range of other data-free
methods: Alpha Weighted, Log Alpha Norm. MP Soft Rank, Frobenius Norm, Spectral Norm
and Generalized von-Neumann Matrix Entropy.

4.1. Analysis of the Alpha Metric Under Re-Initialisation and Re-Randomisation

After training, the ReLU FCN 5x512 model achieves « values within the desired range of 2 and 6,
as seen in Table 1, indicating, according to [12], a well-trained model, which correlates with the
recorded test accuracy. The results in Table 1 could lead to the assumption that all of these layers
should be critical and not robust to re-initialisation or re-randomisation, as layers that are within the
desired « range represent well trained layers.

Table 1: Alpha («) of the layers in ReLU FCN 5x512 and test accuracy of the model. The mean and
4+ 1 SEM [2] (standard error from the mean) are derived from 100 trained models on MNIST.

Layer
FC1 FC2 FC3 FC4 FCs FCeé
Alpha (o) | 4.82 4 0.025 | 4.205 £ 0.039 | 4.126 £ 0.038 | 4.135 + 0.035 | 4.193 4 0.034 | 3.793 £ 0.805 | 96.822 + 0.057

Metric Test Accuracy

Correlation between Alpha (a) and Test Accuracy
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Figure 2: Layer re-initialisation (blue) and re-randomisation ( ) test accuracy vs Alpha

(a). p is the Spearman correlation coefficient, RM SFE is the root mean square error of the linear
regression (red line), and K-7 is the Kendall’s tau measure, all with respect to the relationship
between test accuracy and « values (Left). Empirical distribution of Alpha («) values on a 512x512
fully connected layer, sampled from 10,000 initialisations (Right).

Robust and Critical Layers Impact on Alpha: To understand the interaction between « values and
the criticality of a layer, we compare the independent re-initialisation (blue) and re-randomisation
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( ) of each layer in across 100 networks and record the resulting impact on the networks
test accuracy and alpha value. Figure 2 (left) shows the stark contrast in how layers respond under
re-initialisation or re-randomisation. For example, we find that only when appling re-initialisation to
the Layer FC1 do we see a large drop in test accuracy, re-initialising other layers leave performance
almost unchanged. However, we observe different results when re-randomisation is applied. We
find that re-randomising any layer degrades accuracy to circa random accuracy on the test set. As a
result, we can state that the layers in this ReLU FCN 5x512 are robust to re-initialisation but not
robust to re-randomisation. Surprisingly, this is not reflected in the corresponding « values of these
two conditions, as the main cluster of « values is relatively similar for each layer and each condition.
This suggests that « is not reparameterisation invariant for re-initialisation and re-randomisation
as for both cases, a values are not only similar but are within the optimal « value range — despite a
large drop in accuracy in one case (re-randomisation) but not in the other (re-initialisation).

Lack of Predictive Capacity of Alpha Under Reparametisation: Our findings underscore a
crucial limitation of the data-free metric Alpha. It is unable to discern and explain the performance
difference between re-initialisation and re-randomisation across layers, as shown in Figure 2 (left).
We would expect to observe a strong negative correlation from re-initialisation to re-randomisation
if alpha has predictive capacity. However, there is almost no difference between the o values of
re-initialisation and re-randomisation, with a mean Spearman correlation coefficient and Kendall’s
tau measure across layers of -0.053 and -0.035, respectively. Our findings on the metric Alpha extend
to our exploration of other data free metrics in Appendix Section A.

Empirical Distribution of « at initialization: The results from Figure 2 (left) raise some irregular-
ities when considering the predictive capability of the o value and its ‘good’ value range. To further
investigate the irregularities of the o metric, we observe the empirical distribution of a 512x512
fully connected layer, sampled from 10,000 potential initialisations in Figure 2 (right). The resulting
distribution highlights that an initialised, untrained layer of this network, can fall, by chance, within
the optimal « value range of 2 and 6. That layers FC2-FC5 could all randomly start with an «
value in the ‘well-trained’ range [2, 6] is further evidence that employing power norms is too coarse
a metric and representation of the model to give predictive and informative insights into model
generalisation capabilities. We argue that if we observe a failure case of this metric when considering
initialised layers, it is unlikely to have predictive capacity outside of this regime.

5. Conclusion

Data-free metrics cannot explain the robust and critical layer phenomena. Based on experminents
covering a wide range of these metrics, we argue that they have little to no predictive capacity
over the difference between re-initialisation and re-randomisation robustness of a layer. With this,
we highlight how data-free metrics can be described as non-reparameterisation invariant as they
are not robust under the reparameterisation provided by the critical and robust layer phenomenon.
Furthermore, our results advocate for an in-depth exploration of the dynamics of data-free methods
and the search for methods that can suitably disambiguate between the robust and critical layer
phenomena.
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Appendix A. Further Analysis on Data-Free Metrics

In this section we extend our analysis to the following data free metrics in our existing experimental
setup. W represents the weight matrix of the layer and X is for the empirical spectral density of the
correlation matrix, X = WX , such that pemp(A) ~ A, where \ are the eigenvalues of X

 Alpha Weighted (&): o log(Anaz ), where Apyqq is the max eigenvalue from X [12].
M
* Log Alpha Norm: log(||X||%), where || X||% = >~ A%, where M is the rank of W [12].
i
* MP Soft Rank: is the ratio between the bulk edge of the pemp()\), AT, and the max eigenvalue,
Amazs o [12].
* Frobenius Norm: The sum of the singular values of W denoted as ||W||r.
* Spectral Norm: The max singular value of W denoted as ||V || .
» Stable Rank: The ratio of the squared Frobinues Norm and the squared Spectral Norm,

W17
IIWHg [16].

denoted as

* Generalized von-Neumann Matrix Entropy: ﬁ >_; pilog p;, where M is the rank of

2
matrix W and p; is % where o is the singular values of W [12].
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Each metric can be found below with the appropriate subsection that corresponds to our analysis of
these data-free metrics.

The correlation between data-free metrics Alpha Weighted, Log Alpha Norm, MP Soft Rank,
Frobenius Norm, Spectral Norm, Stable Rank and Entropy and the associated test accuracy when
layers undergo re-initialisation (blue) or re-randomisation are shown in Figures 3, 4, 5, 6, 7, 8 and
9 respectively. Across all metrics, we observe approximately zero correlation between the metric
values and the test accuracy, highlighting the same findings as in the body of the paper.
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A.1. Alpha Weighted (&)

For Alpha Weighted (&) we observe for all layers FC1-FC6 that there is very weak to no correlation
between the layer re-initialisation (blue) and re-randomisation ( ) test accuracy and the Alpha
Weighted & metric, see Figure 3. The highest Spearman correlation coefficient recorded is -0.198 for
Layer FC5. However, the lowest recorded is for Layer FC4 at -0.044. Given that these layers have the
exact dimensions, 512 x 512, this would suggest no correlation between the Alpha Weighted metric
and the test accuracy. It can also be seen in Figure 3 that Layer FC1 observes a very weak positive
Spearman correlation coefficient, highlighting that the Alpha Weighted has no predictive capacity
and is unable to discern the performance difference of the textitre-initialisation and re-randomisation
of a layer.

Correlation between Alpha Weighted (&) and Test Accuracy
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Figure 3: Layer re-initialisation (blue) and re-randomisation ( ) test accuracy vs Alpha
Weighted &. p is the Spearman correlation coefficient, RS M F is the root mean square error of the
linear regression (red line), and K-7 is the Kendall’s tau measure, all with respect to the relationship
between test accuracy and alpha values.

A.2. Log Alpha Norm

For Log Alpha Norm, we observe for all layers FC1-FC6 that there is a very weak negative correlation
between the layer re-initialisation (blue) and re-randomisation ( ) test accuracy and the Log
Alpha Norm metric, see Figure 4. The highest Spearman correlation coefficient recorded is -0.204
for Layer FC5, suggesting a weak negative correlation. However, the lowest recorded is for Layer
FC2 at -0.055. Given that these layers have the exact dimensions, 512 x 512, this would suggest
that there is no correlation between the Log Alpha Norm metric and the test accuracy, given there is
no agreement on the amount of correlation. Given the very weak Spearman correlation coefficient
across layers, we observe that the Log Alpha Norm has no predictive capacity and cannot discern the
performance difference of the re-initialisation and re-randomisation of a layer.
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Correlation between Log Alpha Norm and Test Accuracy
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Figure 4: Layer re-initialisation (blue) and re-randomisation ( test accuracy vs Log Alpha
Norm. p is the Spearman correlation coefficient, RS M E is the root mean square error of the linear
regression (red line), and K-7 is the Kendall’s tau measure, all with respect to the relationship
between test accuracy and alpha values.

A.3. MP Soft Rank

For MP Soft Rank, we observe a mixture of very weak positive and negative Spearman correlation
coefficients of MP Soft Rank and Test Accuracy across layers; see Figure 5. Layers FC1, FC2, and
FC3 report a very weak positive correlation, and Layers FC4, FC5 and FC6 report a very weak
negative correlation. This result provides ample evidence to suggest that MP Soft Rank cannot
disambiguate between re-initialisation and re-randomisation of a layer and thus has no predictive
capacity.
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Correlation between MP Soft Rank and Test Accuracy
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Figure 5: Layer re-initialisation (blue) and re-randomisation ( ) test accuracy vs MP Soft

Rank. p is the Spearman correlation coefficient, RS M E is the root mean square error of the linear
regression (red line), and K-7 is the Kendall’s tau measure, all with respect to the relationship
between test accuracy and alpha values.

A.4. Frobenius Norm

Norm-based metrics were originally shown to be too coarse a metric to measure the generalisability of
the neural networks in [23]. Figure 6 strengthens these findings, highlighting that there is essentially
no correlation between the Frobenius Norm of a layer and the test accuracy of a model.
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Correlation between Frobenius Norm and Test Accuracy
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Figure 6: Layer re-initialisation (blue) and re-randomisation ( ) test accuracy vs Frobenius

Norm. p is the Spearman correlation coefficient, RS M E is the root mean square error of the linear
regression (red line), and K-7 is the Kendall’s tau measure, all with respect to the relationship
between test accuracy and alpha values.

A.5. Spectral Norm

Norm-based metrics were originally shown to be too coarse a metric to measure the generalisability of
the neural networks in [23]. Figure 7 strengthens these findings, highlighting that there is essentially
no correlation between a layer’s Spectral Norm and a model’s test accuracy.
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Correlation between Spectral Norm and Test Accuracy
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Figure 7: Layer re-initialisation (blue) and re-randomisation ( ) test accuracy vs Spectral

Norm. p is the Spearman correlation coefficient, RS M FE is the root mean square error of the linear
regression (red line), and K-7 is the Kendall’s tau measure, all with respect to the relationship
between test accuracy and alpha values.

A.6. Stable Rank

Norm-based metrics were originally shown to be too coarse a metric to measure the generalisability
of the neural networks in [23]. Figure 8 strengthens these findings, highlighting no substantial
correlation between a layer’s Stable Rank and a model’s test accuracy.
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Correlation between Stable Rank and Test Accuracy
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Figure 8: Layer re-initialisation (blue) and re-randomisation ( ) test accuracy vs Stable

Rank. p is the Spearman correlation coefficient, RS M E is the root mean square error of the linear
regression (red line), and K-7 is the Kendall’s tau measure, all with respect to the relationship
between test accuracy and alpha values.

A.7. Generalized von-Neumann Matrix Entropy (Entropy)

For Generalized von-Neumann Matrix Entropy (Entropy) we observe for layers FC3 and FC4
that there is a very weak negative correlation between the layer re-initialisation (blue) and re-
randomisation ( ) test accuracy and the Entropy metric, see Figure 9. On the other hand we
observe a very weak positive correlation for Layers FC1, FC2, FC5 and FC6. This finding suggests
that the Entropy metric has no predictive capacity and cannot disambiguate the observed performance
difference between re-initialisation and re-randomisation.
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Correlation between Entropy and Test Accuracy
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Figure 9: Layer re-initialisation (blue) and re-randomisation ( ) test accuracy vs Entropy. p is

the Spearman correlation coefficient, RSM F is the root mean square error of the linear regression
(red line), and K-7 is the Kendall’s tau measure, all with respect to the relationship between test
accuracy and alpha values.
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